564 research outputs found

    STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response

    Get PDF
    Interferons (IFNs) are key regulators for both innate and adaptive immune responses. By screening ENU-mutagenized mice, we identified a pedigree- P117 which displayed impaired response to type I, but not type II, IFNs. Through inheritance test, genetic mapping and sequencing, we found a T to A point mutation in the 5' splice site of STAT2 intron 4–5, leading to cryptic splicing and frame shifting. As a result, the expression of STAT2 protein was greatly diminished in the mutant mice. Nonetheless, a trace amount of functional STAT2 protein was still detectable and was capable of inducing, though to a lesser extent, IFNα-downstream gene expressions, suggesting that P117 is a STAT2 hypomorphic mutant. The restoration of mouse or human STAT2 gene in P117 MEFs rescued the response to IFNα, suggesting that the mutation in STAT2 is most likely the cause of the phenotypes seen in the pedigree. Development of different subsets of lymphocytes appeared to be normal in the mutant mice except that the percentage and basal expression of CD86 in splenic pDC and cDC were reduced. In addition, in vitro Flt3L-dependent DC development and TLR ligand-mediated DC differentiation were also defective in mutant cells. These results suggest that STAT2 positively regulates DC development and differentiation. Interestingly, a severe impairment of antiviral state and increased susceptibility to EMCV infection were observed in the mutant MEFs and mice, respectively, suggesting that the remaining STAT2 is not sufficient to confer antiviral response. In sum, the new allele of STAT2 mutant reported here reveals a role of STAT2 for DC development and a threshold requirement for full functions of type I IFNs

    Molecular identification of Clonorchis sinensis and discrimination with other opisthorchid liver fluke species using multiple Ligation-depended Probe Amplification (MLPA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infections with the opisthorchid liver flukes <it>Clonorchis sinensis</it>, <it>Opisthorchis viverrini</it>, and <it>O. felineus </it>cause severe health problems globally, particularly in Southeast Asia. Early identification of the infection is essential to provide timely and appropriate chemotherapy to patients.</p> <p>Results</p> <p>In this study we evaluate a PCR-based molecular identification method, Multiplex Ligation-dependent Probe Amplification (MLPA), which allows rapid and specific detection of single nucleotide acid differences between <it>Clonorchis sinensis</it>, <it>Opisthorchis viverrini </it>and <it>O. felineus</it>. Three probe pairs were derived from the Internally Transcribed Spacer 1 (ITS1) of three opisthorchid liver flukes using a systematic phylogenetic analysis. Specific loci were detected in all three species, yielding three amplicons with 198,172 and 152 bp, respectively, while no cross reactions were observed. A panel of 66 <it>C. sinensis </it>isolates was screened using MLPA. All species were positively identified, and no inhibition was observed. The detection limit was 10<sup>3 </sup>copies of the ITS gene for the three liver flukes, or about 60 pg genomic DNA for <it>Clonorchis sinensis</it>. Amplification products can be detected by electrophoresis on agarose gel or in a capillary sequencer. In addition, genomic DNA of <it>Clonorchis sinensis </it>in fecal samples of infected rats was positively amplified by MLPA.</p> <p>Conclusion</p> <p>The flexibility and specificity make MLPA a potential tool for specific identification of infections by opisthorchid liver flukes in endemic areas.</p

    Significance of Coronary Calcification for Prediction of Coronary Artery Disease and Cardiac Events Based on 64-Slice Coronary Computed Tomography Angiography

    Get PDF
    This work aims to validate the clinical significance of coronary artery calcium score (CACS) in predicting coronary artery disease(CAD) and cardiac events in 100 symptomatic patients (aged 37–87 years, mean 62.5, 81 males) that were followed up for a mean of 5 years. Our results showed that patients with CAD and cardiac events had significantly higher CACS than those without CAD and cardiac events, respectively. The corresponding data were 1450.42 ± 3471.24 versus 130 ± 188.29 (P 1000. Increased CACS (>100)was also associated with an increased frequency of multi-vessel disease. Nonetheless, 3 (20%) out of 15 patients with zero CACS had single-vessel disease. Significant correlation (P < 0.001) was observed between CACS and CAD on a vessel-based analysis for coronary arteries. It is concluded that CACS is significantly correlated with CAD and cardiac events

    Transient heat generation in a quantum dot under a step-like pulse bias

    Full text link
    We study the transient heat generation in a quantum dot system driven by a step-like or a square-shaped pulse bias. We find that a periodically oscillating heat generation arises after adding the sudden bias. One particularly surprising result is that there exists a heat absorption from the zero-temperature phonon subsystem. Thus the phonon population in non-equilibrium can be less than that of the equilibrium electron-phonon system. In addition, we also ascertain the optimal conditions for the operation of a quantum dot with the minimum heat generation.Comment: 6 pages, 4 figure

    Glycogen synthase kinase 3α and 3β have distinct functions during cardiogenesis of zebrafish embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis.</p> <p>Results</p> <p>We blocked <it>gsk3α </it>and <it>gsk3β </it>translations by injection of morpholino antisense oligonucleotides (MO). Both <it>gsk3α</it>- and <it>gsk3β</it>-MO-injected embryos displayed similar morphological defects, with a thin, string-like shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the <it>gsk3α</it>- and <it>gsk3β</it>-MO-induced heart defects, we found that the reduced number of cardiomyocytes in <it>gsk3α </it>morphants during the heart-ring stage was due to apoptosis. On the contrary, <it>gsk3β </it>morphants did not exhibit significant apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however, the heart positioning was severely disrupted in <it>gsk3β </it>morphants. <it>bmp4 </it>expression in <it>gsk3β </it>morphants was up-regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in <it>gsk3β </it>morphants were similar to those observed in <it>axin1 </it>and <it>apc</it><sup><it>mcr </it></sup>mutants, suggesting that GSK3β might play a role in cardiac valve development through the Wnt/β-catenin pathway. Finally, the phenotypes of <it>gsk3α </it>mutant embryos cannot be rescued by <it>gsk3β </it>mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant.</p> <p>Conclusion</p> <p>We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3) GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.</p
    corecore